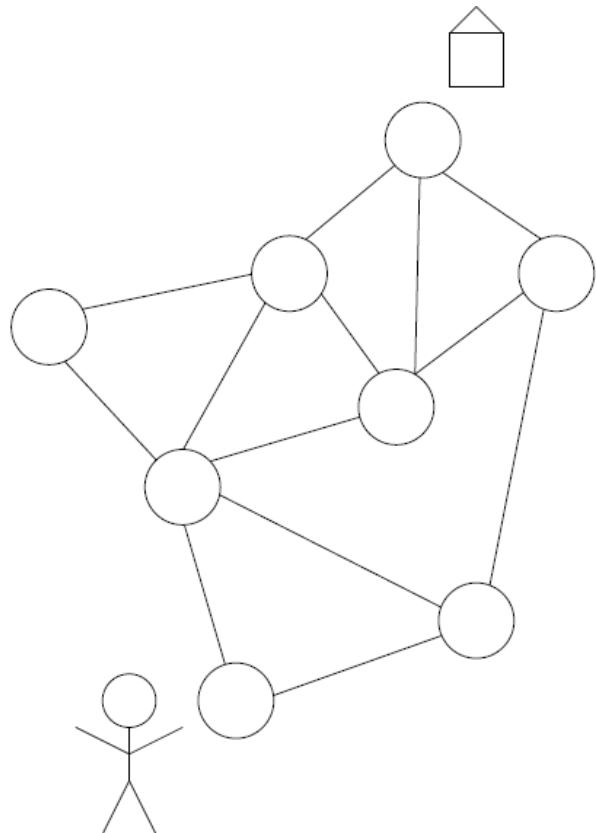


Dagstuhl seminar *computer science and problem solving: new foundations*
Relevant Representations

Johan Kwisthout

Motivating Example: finding your way



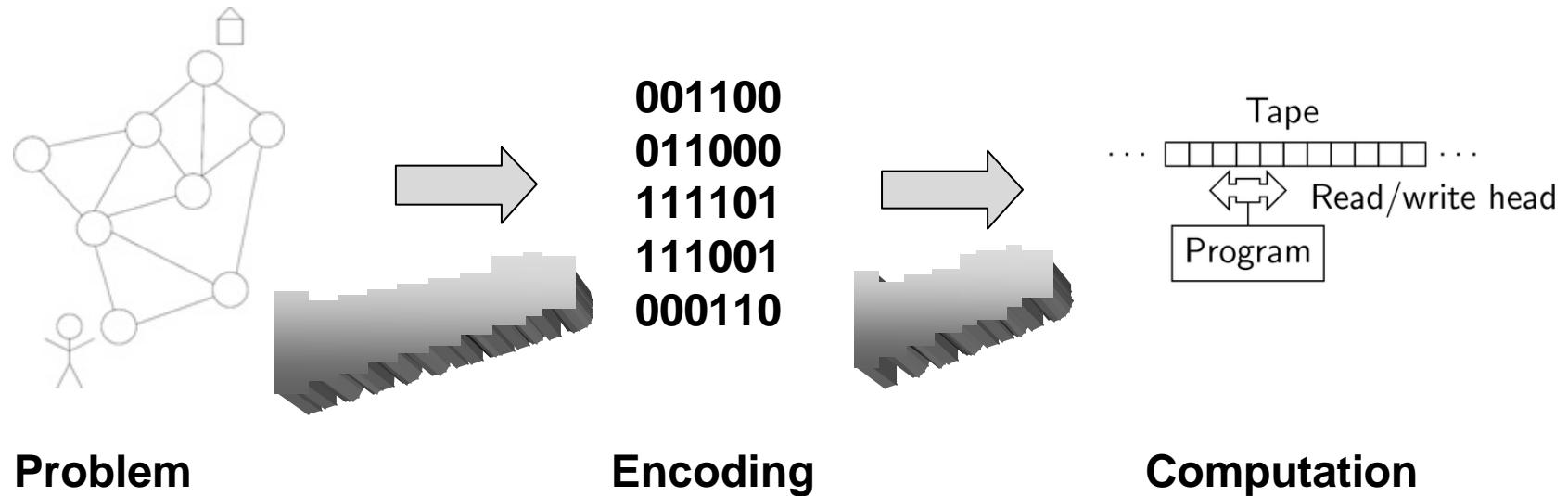
I'm trying to find the shortest path back home

Input: Graph $G = (V, E)$; weights associated with each edge; designated vertices S and T

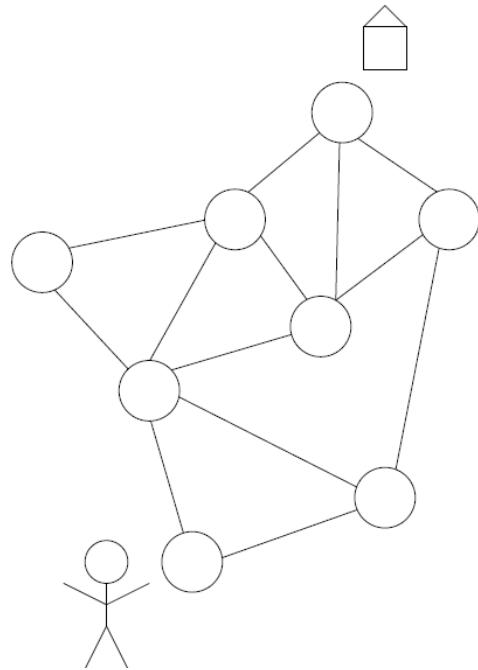
Output: sequence of edges $(S, X), \dots, (Y, T)$ connecting S to T with minimal total weight

Algorithm: Dijkstra's algorithm

The computational complexity view



Aren't we forgetting something?

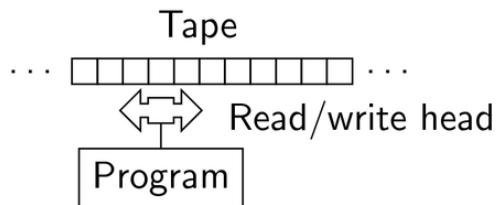


Is **this** our problem?

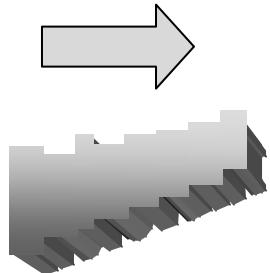
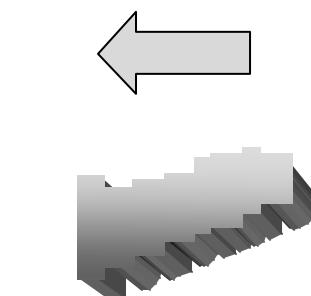
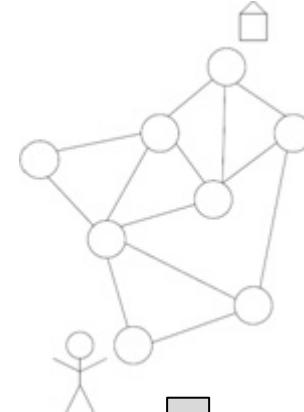
Or is actually **this** our problem?

The *enhanced* computational complexity view

Problem



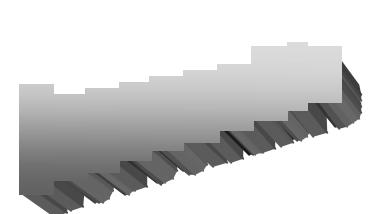
Computation



Abstraction

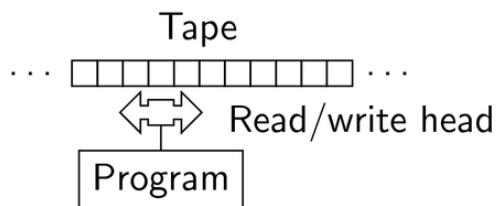
001100
011000
111101
111001
000110

Encoding

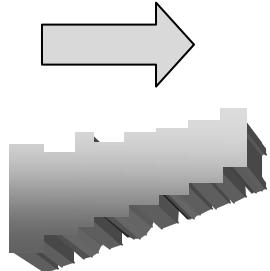
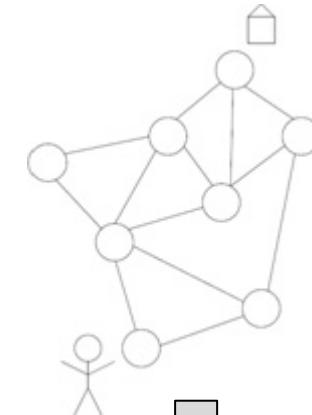


The *enhanced* computational complexity view

Problem

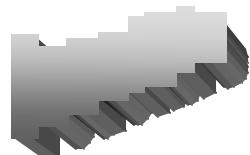


Computation



Abstraction

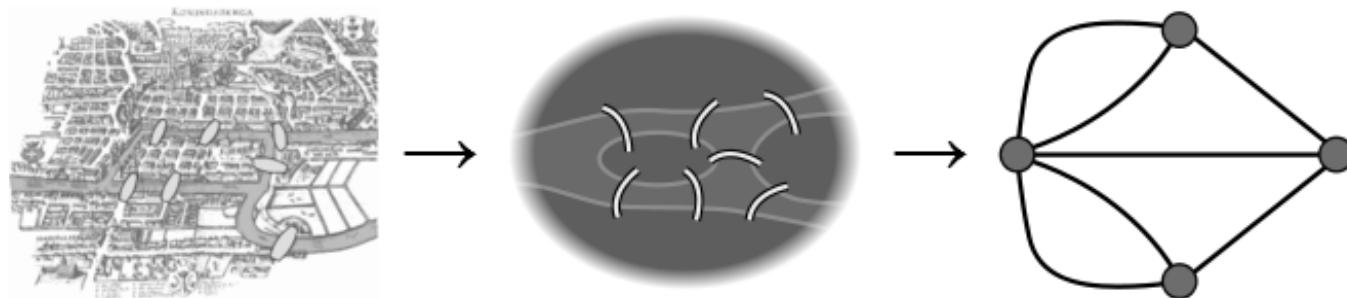
001100
011000
111101
111001
000110



Encoding

A formalization of the problem

- The abstraction step from problem to abstract computational problem formalization is typically a creative step (at least initially)
 - In this abstraction step, we select those relevant characteristics of the problem we need to compute a solution
 - We want to formalize and reason about this abstraction step to study why this is sometimes easy and sometimes hard



How to formulate the abstraction

- Problem solving is formalized as going from one point in an N -dimension hypercube to another point in that hypercube:
 - the problem is going from $X \in \mathbf{N}^N$ to $Y \in \mathbf{N}^N$ (\mathbf{N} denotes naturals)
 - the solution is a path (or action plan) from X to Y
 - possibly optimized by objective function etc.
 - \mathbf{N}^N represents a universe of **all** features (here: dimensions in N) describing the current and desired state
- Abstraction is formalized as finding a subset of that hypercube that is relevant of solving the problem
 - finding a subset \mathbf{N}^M with M considerably smaller than N
 - we can change values of dimensions outside M without *really* changing the problem

Some theorems and observations

- **Theorem of Isotropy (Fodor):** for all problems and for all dimensions d in N there exists an instance for which d is a relevant dimension – everything is potentially relevant
- In practice, some dimensions are relevant in (almost) all instances and some are relevant only in very extraordinary instances (distance vs. color-of-roof)
- We humans are able to reason about these extraordinary instances but this is not our usual behavior – that is what makes a detective story interesting (the *aha-erlebnis*)

How to determine what is relevant

- **Computational problem:** for a function f mapping inputs to outputs, find the minimal subset M of N such that for every X and $Y \in \mathbf{N}^N$, if $Y = f(X)$ then $Y^{\downarrow M} = f(X^{\downarrow M})$
 - Informally: find the relevant subset M of all features N
- **Corollary:** if the isotropy theorem is true, then $M = N$
- Approximate problem: find a *good enough* subset M that will fit *most* instances and will allow one to solve the problem in practice (at least most of the time)

Approximation heuristics (pointers welcome!)

- Humans have a tendency to discretize the task and find anchors and scaffolds
 - Example: ask for directions – traffic lights, crossings, remarkable buildings or natural phenomena
 - Effectively clustering and grouping dimensions
- Humans have a tendency to define states by generalization rather than exhaustive state description
 - At a crossing you can go left, right, or straight ahead
- Humans have a tendency to use what worked in previous (and similar) occasions and apply Occam's razor
- In general, humans use heuristics to go from \mathbf{N}^N to \mathbf{N}^M with M much smaller than N

What to learn from human problem solving

- Assume for now we fix an “optimal relevant subset” M for a particular problem
- Humans make errors in making abstractions
 - Choose $M' \subset M$ – Removing dimensions that are relevant to the problem – block world example
 - Choose $M' \supset M$ – Allowing dimensions that are *not* relevant to the problem – missionaries and cannibals example
 - Choose $M' \neq M$ – Include *both* errors in the abstraction
- Humans sometimes have troubles finding reasonable abstractions, i.e. $M' \approx M$, in reasonable time (or at all)
- Why is abstraction sometimes hard? Are there *inherently hard* abstraction problems?

When is it hard to find a relevant subset

- Compare the following problems
 1. Find a path from A to B
begin state: A **end state:** B
 2. Make X love me
begin state: X doesn't love me **end state:** X *does* love me
- Apparently, while both are problems which fit the formalism before, 2) is much harder to formalize than 1)
- It is very difficult to find a relevant subset M of N in 2), in contrast to 1)
- Why is this the case?

Observations

- In 1) we can explain or argue to others why a particular dimension d should or need not be in M . There is general agreement on most (if not all) relevant dimensions. The problem generalizes (going from C to D) without changing relevant dimensions.
- In 2), there is (for many dimensions) general disagreement whether $d \in M$ or not; arguably there are many relevant dimensions. We will have a hard time explaining the relevant dimensions to others; in fact, it will be an educated guess at best: it is not well understood what the relevant dimensions are here. The problem does not well generalize.

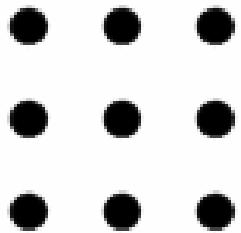
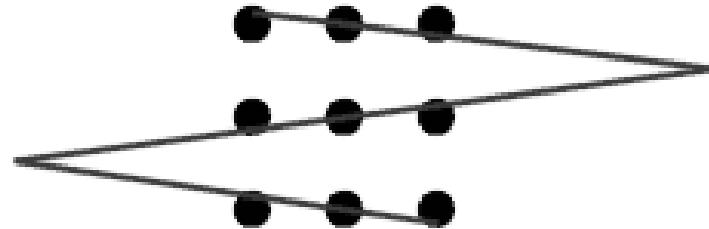
Relevant dimensions

- When is a dimension considered irrelevant?
 - Variation along this dimension changes the outcome only by a tiny amount (i.e., $f(X^{\downarrow d = d_i}) \approx f(X^{\downarrow d = d_j})$) **AND/OR**
 - Variation along this dimension may change the outcome considerably, but only for very exceptional values of d
- Define **expected relevancy** d_d of a dimension as the *product* of the probability and the amount of deviation
 - $d_d = \sum_{d_i} \Pr(d = d_i) \times \text{abs}(f(X^{\downarrow d = d_{\text{ref}}}) - f(X^{\downarrow d = d_i}))$
- Compare d_1 = “exact distance between two points” and d_2 = “global distance between two crossings”
 - Tiny variation in d_1 , large variation in d_2
- Consider d_3 = “color-of-roof”
 - Small probability that a particular value of d_3 has large impact

Relevant dimensions

- Note that the expected relevancy d_d is a *subjective* measure that is *estimated* by the problem solver
- Assumed heuristic in problem solving: we only include dimensions that have a high expected relevancy
- Hypothesis H1: making abstractions is hard when there are (many) dimensions with a high expected relevancy
 - “Everything appears to be relevant!”
- Hypothesis H2: making abstractions is hard when there are (many) dimensions for which the expected relevancy is difficult to estimate
 - “I don’t know what is relevant!”

Nine Dot Puzzle revisited



Solving the Nine Dot Puzzle is hard because we assume that some dimension – the *size* of the dots – is irrelevant; in fact it *is* irrelevant in most of the cases, save this one

Summary

- Before ‘traditional’ problem solving (computing an output from an input) we need to formalize/abstract the problem to a computational problem
- Some problems appear to be harder to abstract than others
- However, there is considerable variation between persons
- Formalizations:
 - Solving a problem (in real-world): going from $X \in \mathbf{N}^N$ to $Y \in \mathbf{N}^N$
 - Abstracting a problem: finding relevant subset $M \subset N$
 - A dimension $d \in N$ is relevant if it has a high expected relevancy
 - $d_d = \sum_{d_i} \Pr(d = d_i) \times \text{abs}(f(X^{\downarrow d = d_{\text{ref}}}) - f(X^{\downarrow d = d_i}))$
- Hypotheses:
 - A problem is difficult to abstract if there are many dimensions d with high or undeterminable relevancy d_d

Questions - Further ideas / work

- Does the notion of expected relevancy capture our intuitive ideas of what makes a problem difficult to formalize?
- Can we learn from human errors in “classical” problems of representation/formalization? Can they be explained in terms of this model?
- Can we learn from differences between experts and novices in a particular domain?
 - Experts probably can assess the expected relevancy of a dimension better than novices