
Relevant Representations

Johan Kwisthout

Dagstuhl seminar computer science and problem solving: new foundations



Motivating Example: finding your way

I’m trying to find the shortest 
path back home

Input: Graph G = (V,E); weights 
associated with each edge; 
designated vertices S and T

Output: sequence of edges (S, X), 
..., (Y, T) connecting S to T with 
minimal total weight

Algorithm: Dijkstra’s algorithm
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Aren’t we forgetting something?

Or is actually this our problem?Is this our problem?
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A formalization of the problem
• The abstraction step from problem to abstract 

computational problem formalization is typically a creative 
step (at least initially)
– In this abstraction step, we select those relevant characteristics of 

the problem we need to compute a solution
– We want to formalize and reason about this abstraction step to 

study why this is sometimes easy and sometimes hard



How to formulate the abstraction
• Problem solving is formalized as going from one point in an 

N-dimension hypercube to another point in that hypercube:
– the problem is going from X ∈ NN  to Y ∈ NN (N denotes naturals)
– the solution is a path (or action plan) from X to Y
– possibly optimized by objective function etc.
– NN represents a universe of all features (here: dimensions in N) 

describing the current and desired state

• Abstraction is formalized as finding a subset of that 
hypercube that is relevant of solving the problem
– finding a subset NM  with M considerably smaller than N
– we can change values of dimensions outside M without really 

changing the problem



Some theorems and observations
• Theorem of Isotropy (Fodor): for all problems and for all 

dimensions d in N there exists an instance for which d is a 
relevant dimension – everything is potentially relevant

• In practice, some dimensions are relevant in (almost) all 
instances and some are relevant only in very extraordinary 
instances (distance vs. color-of-roof)

• We humans are able to reason about these extraordinary 
instances but this is not our usual behavior – that is what 
makes a detective story interesting (the aha-erlebnis)



How to determine what is relevant
• Computational problem: for a function f mapping inputs to 

outputs, find the minimal subset M of N such that for every 
X and Y ∈ NN, if Y = f(X) then Y↓M = f(X↓M)
– Informally: find the relevant subset M of all features N

• Corollary: if the isotropy theorem is true, then M = N

• Approximate problem: find a good enough subset M that will 
fit most instances and will allow one to solve the problem in 
practice (at least most of the time)



Approximation heuristics (pointers welcome!)
• Humans have a tendency to discretize the task and find 

anchors and scaffolds
– Example: ask for directions – traffic lights, crossings, remarkable 

buildings or natural phenomena
– Effectively clustering and grouping dimensions

• Humans have a tendency to define states by generalization 
rather than exhaustive state description
– At a crossing you can go left, right, or straight ahead

• Humans have a tendency to use what worked in previous 
(and similar) occasions and apply Occam’s razor

• In general, humans use heuristics to go from NN to NM with 
M much smaller than N



What to learn from human problem solving
• Assume for now we fix an “optimal relevant subset” M for a 

particular problem
• Humans make errors in making abstractions

– Choose M’ ⊂ M – Removing dimensions that are relevant to the 
problem – block world example

– Choose M’ ⊃ M – Allowing dimensions that are not relevant to 
the problem – missionaries and cannibals example

– Choose M’  ≠ M – Include both errors in the abstraction

• Humans sometimes have troubles finding reasonable 
abstractions, i.e. M’ ≈ M, in reasonable time (or at all)

• Why is abstraction sometimes hard? Are there inherently 
hard abstraction problems?



When is it hard to find a relevant subset
• Compare the following problems

1. Find a path from A to B 
begin state: A end state: B

2. Make X love me
begin state: X doesn’t love me end state: X does love me

• Apparently, while both are problems which fit the formalism 
before, 2) is much harder to formalize than 1)

• It is very difficult to find a relevant subset M of N in 2), in 
contrast to 1)

• Why is this the case?



Observations
• In 1) we can explain or argue to others why a particular 

dimension d should or need not be in M. There is general 
agreement on most (if not all) relevant dimensions. The 
problem generalizes (going from C to D) without changing 
relevant dimensions.

• In 2), there is (for many dimensions) general disagreement 
whether d ∈ M or not; arguably there are many relevant 
dimensions. We will have a hard time explaining the 
relevant dimensions to others; in fact, it will be an educated 
guess at best: it is not well understood what the relevant 
dimensions are here. The problem does not well generalize.



Relevant dimensions
• When is a dimension considered irrelevant?

– Variation along this dimension changes the outcome only by a 
tiny amount (i.e., f(X↓d = di) ≈ f(X↓d = dj) ) AND/OR

– Variation along this dimension may change the outcome 
considerably, but only for very exceptional values of d

• Define expected relevancy dd of a dimension as the 
product of the probability and the amount of deviation
– dd = ∑di Pr(d = di) × abs(f(X↓d = dref) – f(X↓d = di)) 

• Compare d1 = “exact distance between two points” and 
d2 = “global distance between two crossings”
– Tiny variation in d1, large variation in d2

• Consider d3 = “color-of-roof”
– Small probability that a particular value of d3 has large impact



Relevant dimensions
• Note that the expected relevancy dd is a subjective

measure that is estimated by the problem solver

• Assumed heuristic in problem solving: we only include 
dimensions that have a high expected relevancy

• Hypothesis H1: making abstrations is hard when there are 
(many) dimensions with a high expected relevancy
– “Everything appears to be relevant!”

• Hypothesis H2: making abstrations is hard when there are 
(many) dimensions for which the expected relevancy is 
difficult to estimate
– “I don’t know what is relevant!”



Nine Dot Puzzle revisited

Solving the Nine Dot Puzzle is hard because we assume 
that some dimension – the size of the dots – is irrelevant; 
in fact is is irrelevant in most of the cases, save this one



Summary
• Before ‘traditional’ problem solving (computing an output 

from an input) we need to formalize/abstract the problem to 
a computational problem

• Some problems appear to be harder to abstract than others
• However, there is considerable variation between persons
• Formalizations:

– Solving a problem (in real-world): going from X ∈ NN  to Y ∈ NN

– Abstracting a problem: finding relevant subset M ⊂⊂ N
– A dimension d ∈ N is relevant if it has a high expected relevancy
– dd = ∑di Pr(d = di) × abs(f(X↓d = dref) – f(X↓d = di))

• Hypotheses:
– A problem is difficult to abstract if there are many dimensions d 

with high or undeterminable relevancy dd 



Questions - Further ideas / work
• Does the notion of expected relevancy capture our intuitive 

ideas of what makes a problem difficult to formalize?

• Can we learn from human errors in “classical” problems of 
representation/formalization? Can they be explained in 
terms of this model?

• Can we learn from differences between experts and novices 
in a particular domain?
– Experts probably can assess the expected relevancy of a 

dimension better than novices


