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Motivating Example: finding your way

I’'m trying to find the shortest
path back home

Input: Graph G = (V,E); weights
associated with each edge;
designated vertices Sand T

Output: sequence of edges (S, X),
..., (Y, T) connecting S to T with
minimal total weight

O ( __'\':r""'”f Algorithm: Dijkstra’s algorithm



The computational complexity view
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Aren’t we forgetting something?

Is this our problem? Or is actually this our problem?



The enhanced computational complexity view
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The enhanced computational complexity view
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A formalization of the problem

e The abstraction step from problem to abstract
computational problem formalization is typically a creative
step (at least initially)

— In this abstraction step, we select those relevant characteristics of
the problem we need to compute a solution

— We want to formalize and reason about this abstraction step to
study why this is sometimes easy and sometimes hard
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How to formulate the abstraction

* Problem solving is formalized as going from one point in an
N-dimension hypercube to another point in that hypercube:
— the problem is going from X T NN to Y1 NN (N denotes naturals)
— the solution is a path (or action plan) from Xto Y
— possibly optimized by objective function etc.

- NN represents a universe of all features (here: dimensions in N)
describing the current and desired state

Abstraction is formalized as finding a subset of that
hypercube that is relevant of solving the problem
— finding a subset NM with M considerably smaller than N

— we can change values of dimensions outside M without really
changing the problem



Some theorems and observations

« Theorem of Isotropy (Fodor): for all problems and for all
dimensions d in N there exists an instance for which d is a
relevant dimension — everything is potentially relevant

e In practice, some dimensions are relevant in (almost) all
Instances and some are relevant only in very extraordinary
Instances (distance vs. color-of-roof)

 We humans are able to reason about these extraordinary
Instances but this is not our usual behavior — that is what
makes a detective story interesting (the aha-erlebnis)



How to determine what is relevant

Computational problem: for a function f mapping inputs to
outputs, find the minimal subset M of N such that for every
Xand YT NN ifY =f(X) then Y M= f(X M)

— Informally: find the relevant subset M of all features N

Corollary: if the isotropy theorem is true, then M = N

Approximate problem: find a good enough subset M that will
fit most instances and will allow one to solve the problem in
practice (at least most of the time)



Approximation heuristics (pointers welcome!)

Humans have a tendency to discretize the task and find
anchors and scaffolds

— Example: ask for directions — traffic lights, crossings, remarkable
buildings or natural phenomena

— Effectively clustering and grouping dimensions

Humans have a tendency to define states by generalization
rather than exhaustive state description

— At a crossing you can go left, right, or straight ahead

Humans have a tendency to use what worked in previous
(and similar) occasions and apply Occam’s razor

In general, humans use heuristics to go from NN to NMwith
M much smaller than N



What to learn from human problem solving

Assume for now we fix an “optimal relevant subset” M for a
particular problem

Humans make errors in making abstractions

— Choose M’ I M — Removing dimensions that are relevant to the
problem — block world example

— Choose M’ E M — Allowing dimensions that are not relevant to
the problem — missionaries and cannibals example

— Choose M’ * M — Include both errors in the abstraction

Humans sometimes have troubles finding reasonable
abstractions, i.e. M’ » M, in reasonable time (or at all)

Why is abstraction sometimes hard? Are there inherently
hard abstraction problems?



When is it hard to find a relevant subset

« Compare the following problems
1. Find a path from Ato B

begin state: A end state: B
2. Make X love me
begin state: X doesn’t love me end state: X does love me

« Apparently, while both are problems which fit the formalism
before, 2) is much harder to formalize than 1)

e |tis very difficult to find a relevant subset M of N in 2), in
contrast to 1)

 Why is this the case?



Observations

In 1) we can explain or argue to others why a particular
dimension d should or need not be in M. There is general
agreement on most (if not all) relevant dimensions. The
problem generalizes (going from C to D) without changing
relevant dimensions.

In 2), there is (for many dimensions) general disagreement
whether dT M or not; arguably there are many relevant
dimensions. We will have a hard time explaining the
relevant dimensions to others; in fact, it will be an educated
guess at best: it is not well understood what the relevant
dimensions are here. The problem does not well generalize.



Relevant dimensions

When is a dimension considered irrelevant?

— Variation along this dimension changes the outcome only by a
tiny amount (i.e., f(X d=d) » f(X d=d)) AND/OR

— Variation along this dimension may change the outcome
considerably, but only for very exceptional values of d

Define expected relevancy d, of a dimension as the
product of the probability and the amount of deviation

— dy=3a4Pr(d=d,) " abs(f(X d=dref) — f(X d=di))
Compare d, = “exact distance between two points” and
d, = “global distance between two crossings”

— Tiny variation in d,, large variation in d,
Consider d; = “color-of-roof”

— Small probability that a particular value of d, has large impact



Relevant dimensions

» Note that the expected relevancy d, is a subjective
measure that is estimated by the problem solver

« Assumed heuristic in problem solving: we only include
dimensions that have a high expected relevancy

e Hypothesis H1: making abstrations is hard when there are

(many) dimensions with a high expected relevancy
— “Everything appears to be relevant!”

« Hypothesis H2: making abstrations is hard when there are
(many) dimensions for which the expected relevancy is
difficult to estimate

— “l don’t know what is relevant!”



Nine Dot Puzzle revisited
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Solving the Nine Dot Puzzle is hard because we assume
that some dimension — the size of the dots — is irrelevant;
In fact is is irrelevant in most of the cases, save this one




Summary

Before ‘traditional’ problem solving (computing an output
from an input) we need to formalize/abstract the problem to
a computational problem

Some problems appear to be harder to abstract than others
However, there is considerable variation between persons

Formalizations:

— Solving a problem (in real-world): going from X1 NN to YT NN
— Abstracting a problem: finding relevant subset M I [ N

— Adimension d1 N is relevant if it has a high expected relevancy
— dy=4a,4Pr(d=d,) " abs(f(X d=dref) — f()X d=di))

Hypotheses:

— A problem is difficult to abstract if there are many dimensions d
with high or undeterminable relevancy d,



Questions - Further ideas / work

* Does the notion of expected relevancy capture our intuitive
iIdeas of what makes a problem difficult to formalize?

 Can we learn from human errors in “classical” problems of
representation/formalization? Can they be explained in
terms of this model?

 Can we learn from differences between experts and novices
In a particular domain?

— Experts probably can assess the expected relevancy of a
dimension better than novices



